Addendum to Turning History Around:
and other folks we ought to know

by G.S.    <>, 20 September 2007

this page is at

      A couple of folks in Brookline, Massachusetts wrote me about Mazin Qumsiyeh’s talk Sunday night 16 Sept at Brookline High School, both with very interesting observations that I want to alert you to.
      Amy Hendrickson <> of Brookline PeaceWorks said, We sponsored Mazin . . . There was quite an effort to cancel the event by the pressure group CAMERA [ Committee for Accuracy in Middle East Reporting in America, a group describing itself as devoted to monitoring and challenging perceived anti-Israel news coverage] as well as other people who called the High School where the event was scheduled, the superintendant of schools and even the police dept. We were forced to hire a uniformed policeman detail, but fortunately the superintendant of schools stood up for free speech and refused to cancel the event --
Mazin is a terrific speaker, as well as an organizer -- he walked into a room that had maybe 20 per cent really determined zionists, some of whom were eager for a confrontation, but was able to parry every question during Q and A, and meanwhile did a good job of educating everyone there by showing slides -- If you know anyone that can sponsor him as a speaker, or can sponsor the Wheels of Justice, I'd highly recommend doing so.
      Dennis Fox <> of Jewish Voice for Peace maintains a very thoughtful blog, where he posted, on 18 September, a report on Mazin Qumsiyeh’s appearance, with a couple of photographs. His blog is at .
      Another contact who I find enormously valuable is Manuel Garcia Jr. <>. He has written the most meaningful discussion of climate change I know of. He seems to have had an initial bit of difficulty publishing it (perhaps because Alexander Cockburn of Counterpunch was unreceptive to this particular gem), but Dissident Voice did the world a valuable service in posting it, as Climate and Carbon, Consensus and Contention on 4 June 2007, at .
      Perpetuation of essentially irrelevant debates is part of the corporate media’s effort to establish a framework of popular discourse in which ‘contentious’ issues are substituted for real issues. By accepting their presentation as a starting point we let ourselves be diverted from considering the really important questions. Manuel usually doesn’t let himself get diverted from essential matters. Here are some excerpts from his essay.

1. Introduction
Is the world heating up because of a build-up of carbon dioxide (CO2) in the atmosphere? If so, does human activity — like burning fossil fuels — produce enough CO2 to be a decisive factor, or is the process largely natural? Would such global warming be a good thing for humanity and life on Earth, or a danger? Can science give us an accurate measure of the amount of heating per unit of CO2 emission? Does such a process continue monotonically and indefinitely, or does it change character by accelerating wildly — a nonlinear or chaotic behavior — beyond a certain concentration of CO2 in the atmosphere? Can nonlinear and chaotic behavior lead to a completely new climate, like an Ice Age? How quickly can such changes take place? How soon will we know all the answers? How much control will we have over our destinies? How will the world politics of global warming play out, and how can I be a winner in that game?
This article will describe some of the technical considerations that go into making a climate model, and in this way give some context to the many claims and counterclaims made about global warming. As with any phenomenon that has the potential of changing the status quo of human socio-political and financial arrangements, there are many self-interest factions who each have a stake in the molding of public opinion on the topic. Unraveling the truth from the propaganda begins by listing the fundamental scientific considerations needed in order to understand the linked and complex phenomena we call climate.
1. Introduction
2. A historical analogy with the birth of modern physics
3. How greenhouse gases hold heat
4. Water vapor and anthropogenic greenhouse gases
5. A note about ozone
6. How climate models work
   6.1 Models and links
   6.2 Space and time, scales and resolution
7. Solar Heat Into The Geartrain Of Climate
8. Justifying the IPCC consensus
9. Criticizing the IPCC consensus
10. The Open Cycle Closes

2. A Historical Analogy with the Birth of Modern Physics
Climate research in 2007 may be at a similar point of development as physics research was in 1907, poised for revolution.
Albert Einstein (1879-1955) found that the mechanics of Isaac Newton (1642-1727) was only a low speed, low mass limit of “general relativity,” a reality where space, time and gravity are linked, as are mass and energy.
During these same years, Max Planck (1858-1938) introduced his “quantum theory,” which was soon expanded by Einstein and Neils Bohr (1885-1962). Quantum theory revolutionized the 19th century view of electromagnetics, so elegantly stated by Michael Faraday (1791-1867), James Clerk Maxwell (1831-1879), and other scientists of their time and before (e.g., Coulomb, Ampère, Biot, Savart, Hertz). The “old” electromagnetics assumed that a “luminiferous aether” existed in otherwise empty space, and it was the oscillations of this massless “material,” which manifested electromagnetic waves, and as a result all known electrical effects. This idea was a logical extension of the observation that mechanical waves in solids (e.g., elastic waves, earthquakes) and fluids (e.g., water waves, sound waves) were the motion of vibrations through matter.
The great difficulty of 19th century experimental physicists was that they could never devise any experiment to actually detect the luminiferous aether, despite the obvious reality of electrical effects and the many motors, generators, radios and other devices built by Nikola Tesla (1856-1943), Thomas Edison (1847-1931) and other electrical engineers. An experiment to detect the aether (in 1887), by Albert Michelson (1852-1931) and Edward Morley (1838-1923), was famous for establishing that the speed of light in a vacuum was a constant (299,792,458 meters per second, a standard value adopted in 1983) regardless of any motion by the measuring device itself (Einstein’s interpretation). Another paradox was that light could exhibit a wave-like nature, as when it refracted (bent) on passing through a glass-air or water-air boundary, and when it diffracted (separated by color) on passing through a prism or narrow slit; and light could also exhibit a particle-like nature in its very precise and selective initiation of luminescent or electron (charged particle) emission from atoms.
Einstein and the quantum theorists resolved the paradoxes of electromagnetism with the quantum theory. It stated that the luminiferous aether did not exist (thus agreeing with all experiments) and that the seeming contradiction of light (and all electromagnetic radiation) having both a wave and particle nature simultaneously was in fact true. The “wavelength” of a particle or “quantum” of light was exactly proportional to its energy content as given by Planck’s formula, E = h×c/wavelength, where h is Planck’s constant, and c is the speed of light in a vacuum. Despite the seeming oddness of ascribing a wavelength to a single particle (quantum), this model of electromagnetic radiation has proved to be consistent with all measurements. Light has both a wave and particle nature, a fact exploited in electrical, communications, optical and photo-electronic technology.
Now, consider the analogy to climate research today. A consensus has developed, and is voiced by the United Nations Intergovernmental Panel on Climate Change (UN IPCC), that the accumulation of CO2 in the Earth’s atmosphere does cause an accumulation of heat in the atmosphere and biosphere of the Earth. Furthermore, human activity, primarily the burning of fossil hydrocarbon fuels, is a significant cause of this CO2 accumulation. This case has not yet been definitively proved, but the majority of scientists and their professional organizations have reached the conclusion that this case passes the test of being true beyond a reasonable doubt. They see an improving agreement between the many complicated and highly regarded (for theoretical rigor and predictive abilities) numerical (computational) models of climate, and the growing body of paleo-, historical, and current climate data.
The vastness of this entangled problem makes it impossible to know and calculate every conceivable detail “exactly,” so there are many scientist critics of the IPCC consensus. Exceptional scientists and many others of equivalent learning and capability to the consensus scientists are among the critics. However, they appear to be in the minority of scientific opinion on the issue of CO2 and climate change.
We can ask, are the climate change critics of today like the relativity and quantum theory revolutionists of 1900, their ideas not yet expressed compellingly enough to overturn a highly developed consensus view like luminiferous aether, which was orthodoxy taught in the universities by the teachers of Einstein and his generation? If so, then the “real story” has yet to emerge and revolutionize thinking on climate change.
The other possibility is that the revolution in understanding climate change has already begun, being the IPCC consensus, which will be borne out as more data is gathered, bigger computers are used and models of superior refinement are devised. Are the critics resistant to adopting a still fairly nebulous new idea, and to abandon the certainties of their long-standing views — like luminiferous aether a century ago — and the technical doubts they have about the new models, doubts which some can articulate with great logic and precision?
Science will march along and in time we will know the answers. However, our social and political problem is that if the IPCC consensus is correct (and, worse yet, if it is conservative) then we have little time to do anything about the predicted negative consequences of CO2 accumulation in the atmosphere.
. . .
10. The Open Cycle Closes
. . .
As the expanding impact of global warming cracks through the filters on consciousness of more people, there will be an increasing competition to escape and profit from the consequences. One obvious example of this is the nuclear power industry’s enthusiastic adoption of the fearfulness of global warming, “we are the solution” they say. The profit motive is shameless.12
Environmentalists of Luddite persuasions will urge a repentant return to a de-industrialized, agrarian style of life. The military-industrial complex will see the possibilities of “getting into the green” with sales of “green” high technology to the equally messianic capitalist elite, revolted at the idea of sliding “backward” into Third World experience, hence thrusting “forward as to war” to save “our way of life.” Photovoltaics, engineered materials and solid-state micro-electronics are impressive and capable technologies, but they cannot be produced in the quantities and at the costs needed to meet the energy needs of the Third World.13
I think the best response to global warming is to greet it as the next challenge to human development — it certainly presents delectable problems to be solved by any engineer and thermodynamicist interested to devise machines and structures that convert sunlight to electricity. It is time to move beyond our dependency on the burning of paleontologic leavings. It is time to ride the wave of heat washing over the Earth from the Sun. We would leave behind many outmoded technologies, political economies, behaviors and ideas, in making this change. There is nothing “dooming” humanity with the approach of global warming, except the mental inertia that seeks to preserve our petty ignorance, prejudices and greed. The laws of physics present no barrier, and economics is always an artificial construction, which we could choose to configure for the benefit of everybody.
At the end of the above article is the following: Manuel Garcia, Jr. is a physicist (fluid mechanics, gas dynamics, thermodynamics, plasma physics) interested in energy technology; he also has many other interests and opinions. His e-mail address is <>. Read other articles by Manuel, or visit Manuel's website.
All comments and criticisms are welcome.  <>

If you want to be off my e-mail list, please let me know.
If you want to be added, please write me with
your full name and e-mail address

*      *      *
Return to the Latest postings page
Return to the opening page of the Website

Last update of this page: 20 September 2007